If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-Y^2+9Y+5
We move all terms to the left:
-(-Y^2+9Y+5)=0
We get rid of parentheses
Y^2-9Y-5=0
a = 1; b = -9; c = -5;
Δ = b2-4ac
Δ = -92-4·1·(-5)
Δ = 101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{101}}{2*1}=\frac{9-\sqrt{101}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{101}}{2*1}=\frac{9+\sqrt{101}}{2} $
| 11x(4x+3)+23=3x | | 54.528/12.8=n | | 34=y/4+13 | | 7r^2+36r+35=3 | | 11x-1(4x+3)+23=3x | | 12x–4=32 | | 84=n*12 | | 2+-2r=-2 | | 5v^2-38v+46=-2 | | 1/7y+5=-9 | | x=67/1.5 | | 100=x+0.5(x) | | 4a^2-8a-29=-8 | | (3-2z)*(3-z+(3z*3z))=0 | | 7+.4x/9=x/2 | | 9^7y=6 | | (1/5)(5x+3)=4 | | (3-2z)(3-z+(3z*3z))=0 | | 40x^2+80x-100=0 | | (3-2z)(3-z+3z^2)=0 | | 45n^2+20=0 | | 8x+21=3×11 | | 6z=39-2z | | 14*6=3*n | | 8x+21=3÷11 | | (x+2)(x-9)=(7x+17) | | 8x+21=3/11 | | 5(y-1)+16(2y+3)=3(2y-7) | | 10*62=n*6.2 | | y=-9-4-9 | | 0*53=n*34 | | 3(4x+1)=6x+2 |